Blind Estimation of Sparse Multi-User Massive MIMO Channels

نویسندگان

  • Amine Mezghani
  • A. Lee Swindlehurst
چکیده

We provide a maximum likelihood formulation for the blind estimation of massive mmWave MIMO channels while taking into account their underlying sparse structure. The main advantage of this approach is the fact that the overhead due to pilot sequences can be reduced dramatically especially when operating at low SNR per antenna. Thereby, the sparsity in the angular domain is exploited as a key property to enable the unambiguous blind separation between user’s channels. On the other hand, as only the sparsity is assumed, the proposed method is robust with respect to the statistical properties of the channel and data and allows the estimation in rapidly time-varying scenarios and eventually the separation of interfering users from adjacent base stations. Additionally, a performance limit is derived based on the clairvoyant Cramér Rao lower bound. Simulation results demonstrate that this maximum likelihood formulation yields superior estimation accuracy with reasonable computational complexity and limited model assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Blind Estimation of Sparse Broadband Massive MIMO Channels with Ideal and One-bit ADCs

We study the maximum likelihood problem for the blind estimation of massive mmWave MIMO channels while taking into account their underlying sparse structure, the temporal shifts across antennas in the broadband regime, and ultimately one-bit quantization at the receiver. The sparsity in the angular domain is exploited as a key property to enable the unambiguous blind separation between user’s c...

متن کامل

Uplink channel estimation for massive MIMO systems exploring joint channel sparsity

ELECT The joint sparsity of uplink channels in massive multi-input– multi-output (MIMO) systems is explored and a block sparse model is proposed for joint channel estimation. The block coherence of this model is analysed. It is indicated that as the number of antennas at the base station grows to be infinity, the block coherence will be zero. Then a block optimised orthogonal matching pursuit (...

متن کامل

Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading

Channel estimation is crucial for massive massive multiple-input multiple-output (MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. This paper presents a simple and practical channel estimator for multi-cell MU massive MIMO time division duplex (TDD) systems with pilot contamination in flat Rayleigh fading channels, i.e., the gains of...

متن کامل

Sparse Channel Estimation for Massive MIMO System Based on Dirichlet Process and Combined Message Passing

This paper investigate the problem of estimating sparse channels in massive MIMO systems. Most wireless channel are sparse with large delay spread, while some channels can be observed have common support within a certain area of the antenna array. This common support property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. In this paper, we pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017